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Abstract— Interpretation of electroencephalogram (EEG)
signals can be complicated by obfuscating artifacts. Arti-
fact detection plays an important role in the observation
and analysis of EEG signals. Spatial information contained
in the placement of the electrodes can be exploited to
accurately detect artifacts. However, when fewer electrodes
are used, less spatial information is available, making it
harder to detect artifacts. In this study, we investigate the
performance of a deep learning algorithm, CNN-LSTM,
on several channel configurations. Each configuration was
designed to minimize the amount of spatial information
lost compared to a standard 22-channel EEG. Systems
using a reduced number of channels ranging from 8 to
20 achieved sensitivities between 33% and 37% with false
alarms in the range of [38, 50] per 24 hours. False alarms
increased dramatically (e.g., over 300 per 24 hours) when
the number of channels was further reduced. Baseline
performance of a system that used all 22 channels was
39% sensitivity with 23 false alarms. Since the 22-channel
system was the only system that included referential
channels, the rapid increase in the false alarm rate as
the number of channels was reduced underscores the
importance of retaining referential channels for artifact
reduction. This cautionary result is important because one
of the biggest differences between various types of EEGs
administered is the type of referential channel used.

Keywords— EEG signal classification, EEGNet, Saliency
map, Transcutaneous electroacupuncture stimulation
(TEAS).

I. INTRODUCTION

Transcutaneous Electrical Acupoint Stimulation (TEAS)
merges traditional acupuncture with modern electrical
stimulation, offering a non-invasive alternative to man-
ual acupuncture (MA) and electroacupuncture (EA) [1].
TEAS has gained attention for its therapeutic benefits,
notably in enhancing postoperative recovery, managing
pain, and improving sleep quality [2—4]. TEAS’s non-
invasive nature reduces infection risk and discomfort,
making it suitable for patients with needle phobia or
bleeding disorders. Studies have shown its efficacy in
neurorehabilitation, chronic pain management, and al-
leviating chemotherapy-induced peripheral neuropathy
[5]1.[6]. Despite its benefits, the mechanisms through
which TEAS influences brain activity remain unclear.
Advanced neuroimaging tools such as electroencephalo-
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gram (EEG) and functional magnetic resonance imag-
ing (fMRI) have been employed to study acupunc-
ture’s effects. Previous research indicates that both low
and high-frequency stimulations have distinct analgesic
mechanisms [7, 8]. Only one study has applied a deep
learning algorithm to TEAS, which employed a hybrid
CNN-LSTM model [9].

This study aims to enhance the understanding of
TEAS’s neurophysiological effects by using EEGNet, a
specialized CNN, to accurately classify brain responses
to four different TEAS frequencies (2.5, 10, 80, and
sham). Building on previous work [9], we introduce
a novel phase-based analysis, capturing dynamic brain
responses across pre-stimulation, stimulation, and post-
stimulation phases. Additionally, saliency maps are used
to identify key EEG electrodes, reducing the number
needed without sacrificing accuracy, and an analysis of
EEG frequency bands (delta, theta, alpha, beta, gamma)
reveals their sensitivity to TEAS. These innovations
offer both a comprehensive view of brain responses
and practical improvements for optimizing therapeutic
applications.

II. METHODS

1I-A. Study Design and Data Collection

The study received ethical approval from the University
of Hertfordshire’s Health and Human Sciences Ethics
Committee, under protocol number HSK/SF/UH/00124.
The study involved 48 participants with a diverse range
of ages (18 to 69 years) and a mix of sexes (18 male
and 30 female). Each session comprised eight 5-minute
periods, categorized as Baseline (first slot), Stimulation
(second to fifth slots), and Post-stimulation (sixth to
eighth slots). TEAS was administered using a charge-
balanced Equinox E-T388 stimulator at frequencies of
2.5, 10, 80, or 160 pulses per second (pps), with the
160 pps frequency serving as a ’sham’ treatment due to
its very low amplitude, which many participants could
not detect.The selection of the three TEAS frequen-
cies—2.5, 10, and 80 pps—was based on their common
use in clinical practice and existing literature on TEAS
[10]. The sequence of stimulation frequencies was semi-
randomized among participants to reduce order effects.
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EEG data were recorded from 19 electrodes according
to the international 10/20 system, with linked ears as
the reference and a ground electrode placed anterior
to Fz. Custom-fitted Electro Cap International (ECI)
caps were used for participant comfort and data quality.
The EEG signals were amplified using a Mitsar EEG-
202 amplifier and digitized at a sampling rate of 500
Hz. Preprocessing included the removal of noise and
artifacts to generate clean EEG datasets for each partic-
ipant, suitable for further analysis. The EEG periods
were divided into five 1-minute segments, each split
into two halves. 10-second epochs were extracted from
the beginning of each half (at the 0 and 30-second
marks). This approach produced ten epochs per period,
resulting in a comprehensive dataset for evaluating the
effects of the different TEAS frequencies on EEG
activity. The Equinox stimulator and the arrangement
of sensors and electrodes are depicted, featuring the
fingertip photoplethysmography (PPG) sensor, an ECG
electrode positioned on the right forearm, and TENS
(transcutaneous electrical nerve stimulation) electrodes
located at the LI4 (HeGu) acupoint and along the ulnar
edge of the hands.

II-B. Data Preprocessing

The EEG data were band-pass filtered between 0.5
and 45 Hz using second-order Butterworth filters to
remove noise, including the 50 Hz power line inter-
ference. Independent Component Analysis (ICA) was
applied using the extended Infomax algorithm [11] to
remove artifacts. We used the MNE-Python library,
with FastlCA and PCA retaining 99% of variance
to ensure optimal artifact removal without overfitting.
MARA [12] and ICLabel [13] further refined artifact
rejection. Epochs with amplitude deviations exceeding
+3 standard deviations were removed [9]. Data were
re-referenced using a current source density (CSD)
transformation [14]. Each 10-second epoch was divided
into 1-second trials, resulting in approximately 4750-
4800 trials per stimulation frequency across all slots.

II-C. Applying EEGNet to TEAS Data

We employed EEGNet, a convolutional neural network
architecture optimized for EEG-based brain-computer
interfaces (BCIs) [15], to classify EEG data recorded
during TEAS sessions. EEGNet processes the input
through convolutional and pooling layers specifically
tailored for EEG signal classification. Figure 1 illus-
trates the customized EEGNet architecture on TEAS
data.

The input layer accepts a 3D matrix of shape (19 elec-
trodes, 500 samples, 1). The first convolutional block
applies a 2D convolution across the temporal dimension,
followed by depthwise convolution for spatial filtering.
Separable convolutions in the second block reduce com-
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putational cost. Both blocks use ELU activation, average
pooling, and dropout layers to prevent overfitting.

The model was trained using the Adam optimizer with a
learning rate of 0.0001. Although the maximum number
of epochs was initially set to 700, early stopping was
employed based on validation loss, which typically
halted the training after approximately 400 epochs. The
early stopping criterion monitored the validation loss
with a patience value of 20, meaning training would
cease if the validation loss did not improve for 20
consecutive epochs. This ensured that the model did not
undergo excessive training, thereby mitigating the risk
of overfitting. Regularization techniques, including a 0.5
dropout rate, L2 regularization (weight decay of 0.1),
and batch normalization, were also employed, further
reinforcing the robustness of the model against over-
fitting. This was confirmed by consistent performance
across S-fold stratified cross-validation. Key hyperpa-
rameters included a kernel length of 250, 8 filters in the
first block, a depth multiplier of 16, and 128 filters in the
second block. To capture the overall effects of TEAS on
EEG signals, we used 5-fold cross-validation, ensuring
balanced representation of TEAS frequencies across all
splits, with 80% training and 20% testing in each fold.
Segments from all participants were included in both the
training and test sets, allowing the model to generalize
the effects of TEAS on EEG signals. This method pro-
vided a comprehensive understanding of TEAS’s overall
impact on EEG activity without overfitting, as evidenced
by the early stopping mechanism and the consistent
validation performance across folds. Sensitivity (recall)
measures the proportion of actual positives for each
class that are correctly identified by the classifier. It is
crucial in applications where the omission of a condition
can have serious consequences. Sensitivity for class ¢
is calculated as:
o TPk
Sensitivity, = TP+ FN. (1)
Specificity for a multi-class classification assesses the
model’s ability to correctly identify instances that do not
belong to each particular class. For class c, specificity
is calculated as:
e TN,
Specificity. = TN. 1 FP. 2)
Precision quantifies the number of correct positive pre-
dictions made by the classifier for each class. It is
defined for class c as:
. TP,
Precision, = TP 1 FP. 3)
The Fl-score is the harmonic mean of precision and
sensitivity for each class, providing a single score that
balances the two metrics. It is calculated for class c as:
Precision. x Sensitivity,

F1-Score. =2 % — — 4)
Precision. + Sensitivity,
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Figure 1. Block diagram of the customized EEGNet architecture.

II-D. Saliency Map Computation

To interpret the decision-making process of our neural
network model, we utilized saliency maps to extract
the influential features within the EEG data for clas-
sification. Saliency maps highlight the sensitivity of the
output to changes in the input [16]. We approximated
the class score function S.(I) near the input EEG signal
Iy using the first-order Taylor expansion, computed as:

S.(I) ~w'I+b ®)

where W = 31 . represents the saliency map for class

c. These maps were normalized to ensure meaningful
interpretation [17]:

W,(I) — min(W.(I))
max(W,(I)) — min(W,(I))

W (I) = (6)

Aggregated saliency maps were computed for multiple
samples to obtain a mean map for each class [18].

II-E. Electrode Importance Scoring

We quantified the importance of each EEG electrode by
summing the saliency values across the time dimension,
resulting in a single saliency value per electrode for each
class:

Ecx=Y Wep (7
t

where E_; is the summed saliency value for class ¢ at
electrode k, and ch, is the mean saliency value at
time ¢ for electrode k. These values were normalized to
compare the relative importance within the class:

r Ec,k

&=

¢ Z J Ec, j
To determine the overall importance of each electrode
across all classes, we aggregated the normalized impor-

tance scores:
E/ =Y E/, ©
c

®)
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Electrodes were then ranked based on their aggregated
importance scores to identify the most influential elec-
trodes in the classification task.

III. RESULTS

III-A.  Classification Performance Across TEAS Ses-
sions

Our initial task was to evaluate the variability in
brain response to different TEAS frequencies using the
EEGNet deep learning model. Table 1 presents the
classification accuracy for the four TEAS frequencies
(2.5, 10, 80, and sham at 160 pps) across various
time slots during stimulation. The results demonstrate
that the classification accuracies consistently exceeded
95%, indicating the model’s high reliability in correctly
identifying the four TEAS frequency classes. Sensi-
tivity was above 93%, specificity over 97%, precision
above 94%, and F1-score exceeded 95% for all classes,
validating the model’s high accuracy in classification
tasks. This suggests that TEAS at various frequencies
may engage different neural mechanisms and pathways.
Understanding these EEG differences can help tailor
TEAS treatments to achieve specific therapeutic effects,
optimize stimulation protocols for individual patients,
and provide a better understanding of how acupuncture
influences brain activity in real time.

III-B. Assessing Various TEAS Frequencies in Each
Time Slot

Next, we explored how brain activity varied across
different phases of TEAS sessions. Table 2 displays
the classification accuracies for pre-stimulation, during
stimulation, and post-stimulation phases. The results
indicate that EEGNet maintained high classification
accuracies across all phase for each TEAS frequency,
consistently achieving over 95% accuracy. Sensitiv-
ity, specificity, precision, and F1 score metrics also
displayed high wvalues, indicating robust model per-
formance in differentiating brain activity phases. This
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Table 1. Total classification accuracy during the stimulation across different TEAS frequencies. All values are presented as
mean accuracies with the overall range of standard deviations being 0.2% to 0.62%. The abbreviations used in the table:Sen:

Sensitivity, Spe: Specificity, Pre: Precision, F1: F1 Score.

Slot Accuracy. 2.5 pps 10 pps 80 pps Sham

Sen Spe Pre F1 Sen Spe Pre F1 Sen Spe Pre F1 Sen Spe  Pre F1

Slot 2 9565 095 098 095 095 096 097 094 095 093 099 098 095 096 097 094 095

Slot 3 9670 096 0.99 097 09 096 098 098 097 097 098 09 097 097 099 095 096

Slot 4 9645 096 097 094 095 097 098 09 096 095 098 097 096 095 098 097 096

Slot 5 97.66 097 099 097 097 098 099 097 097 096 098 097 097 098 099 098 0.98
provides a view of how TEAS affects brain activity over e
—&— 10pps

time, which may help in better understanding immediate
neural responses and the overall dynamic profile of brain
activity modulation, contributing to optimizing thera-
peutic strategies and advancing knowledge of TEAS
neurophysiological mechanisms.

II-C. Classification of TEAS Stimulation Phases
Across Frequencies

We further assessed classification accuracies during spe-
cific stimulation phases (slots 2-5) for different TEAS
frequencies. As shown in Table 3, the model maintained
high accuracy, consistently exceeding 93% across all
frequencies. This finding indicate that TEAS stimulation
can induce dynamic changes in EEG signals over time,
reflecting the brain’s response to the treatment and the
progressive relaxation and modulation of brain activity
during the stimulation.

II-D. Evaluating EEG Frequency Band Responsive-
ness to TEAS

We also evaluated the responsiveness of each EEG
frequency band of delta (1-4 Hz), theta (4-8 Hz),
alpha (8-13 Hz), beta (13-30 Hz), and gamma (30-
50 Hz) to TEAS. The classification accuracies were
averaged across various EEG frequency bands during
different TEAS phases as indicated in Table 2. Figure 2
summarizes the averaged accuracies, revealing that the
beta and gamma frequency band exhibited the highest
responsiveness, with classification accuracies exceeding
90%. Beta frequency is associated with active think-
ing, focus, and cognitive processing. changes in beta
frequency may indicate that TEAS enhances alertness
and cognitive function, possibly by reducing anxiety and
stress. Gamma frequency is linked to high-level cogni-
tive functions, such as information processing, memory,
and consciousness. Changes in gamma activity could
suggest improved neural synchrony and integration of
sensory information.

III-E. Optimizing Electrode Selection for EEG-Based
TEAS Frequency Classification Using Saliency
Maps

To refine the electrode selection for EEG-based classifi-
cation of TEAS frequencies, we used saliency maps to
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Figure 2. Averaged classification accuracy at each EEG fre-
quency band for different TEAS frequencies across time.

identify the most significant electrodes. Figure 3 shows
the topographic distribution of aggregated saliency maps
for various TEAS frequencies. Electrodes Fpl, Fp2,
Fz, F7, F8, T3, and T4 were identified as the most
influential. Table 4 lists the combinations of these elec-
trodes. Figure 4 illustrates the classification accuracy
for incremental electrode combinations, demonstrating
that a subset of seven electrodes achieved accuracy
close to the full 19-electrode set. This indicates the
efficiency of the selected subset, which could stream-
line EEG protocols and improve patient comfort. We
opted to extract saliency maps from a single model,
as preliminary experiments demonstrated consistently
high classification accuracy across various electrode
subsets, confirming the model’s robustness. This ap-
proach ensured that the saliency maps offered a reliable
and generalized interpretation of the brain’s response to
TEAS. The electrodes Fpl and Fp2, located over the
prefrontal cortex, are critical regions involved in cogni-
tive control, decision-making, and emotional regulation.
Previous studies (e.g., [19], [20]) have demonstrated
that acupuncture and TEAS modulate prefrontal cortex
activity, aligning with our saliency maps that highlight
these electrodes. Fz, positioned over the midline frontal
cortex, plays a role in motor control and attention,
areas that are potentially influenced by TEAS, espe-
cially in contexts like pain management or cognitive
enhancement. Additionally, T3 and T4, located over
the temporal lobes, are involved in auditory processing,
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Table 2. Average classification accuracy and metrics for different TEAS frequencies across time slots. All values are presented
as mean accuracies with the overall range of standard deviations being 0.18% to 0.70%. The abbreviations used in the table:
Sen: Sensitivity, Spe: Specificity, Pre: Precision, F1: F1 Score, Stim: TEAS Stimulation

Pre-Stim Stim Post-Stim
Frequency Accuracy
Sen Spe Pre F1 Sen Spe Pre F1 Sen Spe Pre F1
Sham 95.02 0.96 0.97 0.94 0.95 0.94 0.98 0.95 0.95 0.95 0.98 0.95 0.95
10 96.63 0.97 0.98 0.97 0.97 0.96 0.99 0.97 0.97 0.97 0.98 0.96 0.97
2.5 96.53 0.97 0.98 0.96 0.97 0.96 0.99 0.97 0.97 0.96 0.99 0.97 0.97
80 96.12 0.96 0.98 0.96 0.96 0.95 0.98 0.96 0.96 0.96 0.98 0.96 0.96

Table 3. Total classification accuracy during stimulation phase across different TEAS frequencies. All values are presented as
mean accuracies with the overall range of standard deviations being 0.18% to 0.60%. The abbreviations used in the table: Sen:

Sensitivity, Spe: Specificity, Pre: Precision, F1: F1 Score.

Slot 2 Slot 3 Slot 4 Slot 5
Frequency Accuracy
Sen Spe Pre F1 Sen Spe Pre F1 Sen Spe Pre F1 Sen Spe Pre F1
2.5 9598 097 098 096 096 097 097 094 095 095 099 098 096 095 098 097 0.96
10 95.68 097 097 093 095 096 099 098 097 093 098 096 095 096 098 096 096
80 9636 097 098 097 097 096 098 096 096 095 098 096 095 098 099 097 098
Sham 9352 094 098 094 094 091 098 095 093 093 098 094 093 096 096 091 093

Table 4. Electrode combinations and their corresponding elec-
trode label

Name of Combinations Name of Electrodes

combl Fpl, Fp2

comb2 Fpl, Fp2, Fz

comb3 Fpl, Fp2, Fz, F8, F7

comb4 Fpl, Fp2, Fz, F§, F7, T3, T4

Fpl, Fp2, F7, F3, Fz, F4, F8, T3,
C3, Cz, C4, T4, T5,
P3, Pz, P4, T6, O1, O2

all electrodes

memory, and emotional regulation. Their inclusion as
critical electrodes suggests that TEAS may modulate
temporal lobe activity, influencing memory and emo-
tional responses, particularly in cases of chronic pain
or stress.

IV. SUMMARY

This paper investigates the neurophysiological effects
of TEAS on brain activity using advanced machine
learning techniques. We analyzed EEG data from 48
participants subjected to various TEAS frequencies (2.5,
10, 80, and sham at 160 pulses per second) to un-
derstand the brain’s response. Employing EEGNet, a
convolutional neural network optimized for EEG sig-
nal processing, we achieved over 93% classification
accuracy in 1) differentiating brain responses to differ-
ent TEAS frequencies at various stimulation slots, 2)
detecting the effect of TEAS across the three phases
at different TEAS frequencies, and 3) evaluating the
dynamic changes of brain responses during stimulation
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slots at each TEAS frequency. Furthermore, our analysis
of individual EEG frequency bands revealed that TEAS
induces distinct changes in EEG signals over time,
especially in the beta and gamma frequency bands.
These changes suggest that TEAS enhances cognitive
functions and neural synchrony, leading to reducing
anxiety and stress.

Finally, saliency maps identified critical EEG electrodes,
revealing that a subset of seven electrodes could achieve
classification accuracy close to the full 19-electrode set.
This finding suggests the potential for optimizing EEG
protocols, reducing the number of electrodes needed
without compromising accuracy. Our study advances
the understanding of TEAS’s neurophysiological mech-
anisms and demonstrates the efficacy of deep learning
models in EEG signal classification. These insights
could inform the optimization of TEAS protocols for
therapeutic applications, enhancing patient outcomes
and providing a deeper understanding of how acupunc-
ture influences brain activity in real time.
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